
Alt/Az and Derotator Calculations 
With the new generation of low-read-noise cameras, short-exposure astrophotography with 

long integration times for Dobsonians has become feasible.  Due to the long integration times, 

the use of a field derotator is necessary.  While rotators are fairly common for framing the 

image, not all rotators provide a derotator feature, and higher-level APIs in ASCOM and INDI 

don’t have them.  However, high-level clients such as Nina and Ekos often provide a scripting 

ability that enables the use of derotation in between short exposures.  Here we will discuss the 

math needed to make this possible.  The goal is to find the angle between lines of constant Alt 

(camera) and constant Dec (target) at the target based on the local time, observer location 

(Lat/Long), and target coordinates (RA/Dec).  We will attach Scilab code that implements this. 

Hour angle 
The Julian date system is well described in Wikipedia.  Its origin is at noon Universal Time on Jan 

1, 4713 BC.  The position of heavenly bodies is mostly determined by Earth’s rotation and to a 

much smaller extent by nutation and precession.  For those reasons we use the Julian-based 

J2000 system where the origin is reset to noon Universal Time on Jan 1, 2000.  Precession and 

nutation since then are only a few arc minutes, which can be ignored for our purposes.  We can 

find the Julian date by applying the J2000 system, then adding the offset of J2000 origin to the 

Julian origin. 

Calculating today’s hour angle in the J2000 system can be done by a clever formula in Wikipedia 

(see link above), or by simply using a table of cumulative days-per-year, one for regular years 

and one for leap years.  The correction for the 12-hour offset of Julian relative to UT (12:00 and 

0:00, respectively) is most easily done after obtaining the Julian day number since the J2000 

origin.  Then we add in the local time zone and daylight savings time to find UT from the local 

time.  We refer to the attached code for the details. 

Given the Julian time, we can apply the formula 

𝐻𝐴 = 𝐺𝑆𝑇 + 𝐿𝑂𝑁 − 𝑅𝐴 

where HA = local hour angle, GST = Greenwich Sidereal Time, LON = observer’s longitude, and 

RA = Right Ascension of the target.  There are two versions of GST for nutation and/or 

precession, but if we ignore that it is Universal Time (UT).  How this relates to Earth’s Rotation 

Angle (ERA) and the Julian date is discussed in Wikipedia.  We approximate the ERA as 

𝐸𝑅𝐴 = 2𝜋(0.7790572732640 +  1.00273781191135448 𝑈𝑇) 

where UT is the Universal Time.  Truncating this to 2𝜋 then yields the target’s HA. 

https://en.wikipedia.org/wiki/Julian_day#Julian_day_number_calculation
https://en.wikipedia.org/wiki/Sidereal_time#Earth_rotation_angle


Transformations between Equatorial and Alt/Az systems 
It is useful to think of Earth as a near-infinitely small sphere inside the unit sphere in a Cartesian 

coordinate system.  It is convenient to represent observation targets as dots on the unit sphere 

because their coordinates can be readily converted to angles.  Earth  being very small on this 

scale, it resembles the night skies with targets at near-infinity.  We will define two Cartesian 

coordinate systems labeled as XYZ and UVW.   

The XYZ system is right-handed with Z pointing at the Northern Celestial Pole (NCP) and the YZ 

plane containing the observer’s location.  Thus, the Y axis points at the observer’s location down 

South (from the observer’s point of view) while the X axis points West.  This is most easily 

related to an equatorial HA/Dec coordinate system where targets move along circles of constant 

Dec values. 

The UVW system is also right-handed and has its W axis pointing at zenith at the observer’s 

zenith with the UV plane tangent to Earth’s surface and V pointing at the (local) South meridian.  

We can think of it as the XYZ turned over an angle 
𝜋

2
− 𝜆 along the YZ plane where 𝜆 is the 

observer’s latitude.  The observer’s V axis faces the South meridian while the U axis points 

West. 

We choose the natural bases {𝑒𝑋 , 𝑒𝑌, 𝑒𝑍} and {𝑒𝑈, 𝑒𝑉, 𝑒𝑊} for the XYZ and UVW systems, 

respectively, to relate them numerically.  Here, 𝑒𝑋 = 𝑒𝑈 and 

(𝑒𝑉, 𝑒𝑊) = (𝑒𝑌, 𝑒𝑍) (
𝑠 𝑐

−𝑐 𝑠
) 

where 𝑐 = cos 𝜆 and 𝑠 = sin 𝜆.  Thus, for a point 𝑝 on the unit sphere, we have 

𝑝 = (𝑒𝑋 , 𝑒𝑌, 𝑒𝑍) (
𝑥
𝑦
𝑧

) = (𝑒𝑈, 𝑒𝑉 , 𝑒𝑊) (
𝑢
𝑣
𝑤

) 

If we define 

𝑇 = (
1 0 0
0 𝑠 𝑐
0 −𝑐 𝑠

) 

then we have 

(𝑒𝑈, 𝑒𝑉, 𝑒𝑊) = (𝑒𝑋 , 𝑒𝑌, 𝑒𝑍) 𝑇 

Therefore, we can relate the numerical representations of 𝑝 by 

(
𝑥
𝑦
𝑧

) = 𝑇 (
𝑢
𝑣
𝑤

) 



Note that 𝑇 is orthogonal, so 𝑇−1 = 𝑇′. 

A representation of 𝑝 in equatorial coordinates (HA, DEC) = (𝜂, 𝛿) is 

(
𝑥
𝑦
𝑧

) = (
cos 𝛿 sin 𝜂
cos 𝛿 cos 𝜂

sin 𝛿

) 

And in Alt/Az coordinates is (Alt, Az) = (𝛼, 𝜁) is 

(
𝑢
𝑣
𝑤

) = (
cos 𝛼 sin(𝜁 − 𝜋)

cos 𝛼 cos(𝜁 − 𝜋)
sin 𝛼

) 

For the −𝜋 term, note that AZ = 0 points at the North meridian while the V axis points South.  

The angle 𝜁 − 𝜋 is then somewhat similar to HA that also has its origin at the South meridian. 

Going from equatorial to Alt/Az is then done by first calculating 

(
𝑢
𝑣
𝑤

) = 𝑇′ (
cos 𝛿 sin 𝜂
cos 𝛿 cos 𝜂

sin 𝛿

) 

The Alt/Az coordinates are then by 𝛼 = sin−1 𝑤 and 𝜁 = tan−1(𝑢, 𝑣) + 𝜋 where we use the 

inverse tangent for individual coordinates to cover all quadrants without ambiguity.  This form is 

very common in numerical packages, see for instance Scilab.  Note that the angle tan−1(𝑢, 𝑣) is 

with the V axis in the U (West) direction, so we have to add 𝜋 to get Az. 

Going from Alt/Az to equatorial coordinates we first calculate 

(
𝑥
𝑦
𝑧

) = 𝑇 (
cos 𝛼 sin(𝜁 − 𝜋)

cos 𝛼 cos(𝜁 − 𝜋)
sin 𝛼

) 

then retrieve 𝛿 = sin−1 𝑧 and 𝜂 = tan−1(𝑥, 𝑦). 

Rotator angles 
Since the rotator angles depend on user preferences for the specific target, we use the angle 

between the Alt/Az grid and the RA/Dec grid at the target as a reference.  The user can then add 

his additional rotation preference for framing to that angle.  We assume short exposures where 

the coordinates are essentially constant during the exposure.   The Alt/Az grid represents the 

position of the camera, whereas the RA/Dec grid represents the orbit of the target.  Note that in 

HA, the target is moving in the opposite direction of increasing RA because the HA = 0 line 

moves towards increasing RA in function of time.  This is important when validating the results 

with planetary programs such as Stellarium. 



We will use the Alt/Az axes as a 2D Cartesian coordinate system.  The X axis will be Az (positive 

direction is that of increasing Az), the Y axis will be Alt (positive direction is that of increasing 

Alt).  Note that they are perpendicular.  The direction in which the camera moves is that of 

decreasing RA, which is the same as increasing HA as time moves along.  We can use the unit 

vectors of the XY axes to form inner products with the HA line and retrieve the angle from the 

positive Az axis to the positive HA (negative RA) axis for all quadrants. 

The tangent to the Az curve (constant Alt) follows from its derivative to 𝜁: 

𝑑𝑝

𝑑𝜁
= (

cos 𝛼 cos(𝜁 − 𝜋)

− cos 𝛼 sin(𝜁 − 𝜋)
0

) 

The tangent to the Alt curve (constant Az) follows from its derivative to 𝛼: 

𝑑𝑝

𝑑𝛼
= (

− sin 𝛼 sin(𝜁 − 𝜋)

− sin 𝛼 cos(𝜁 − 𝜋)
cos 𝛼

) = (
sin 𝛼 sin(𝜁)

sin 𝛼 cos(𝜁)
cos 𝛼

) 

The tangent to the HA curve (constant Dec) follows from its derivative to 𝜂: 

𝑑𝑝

𝑑𝜂
= 𝑇′ (

cos 𝛿 cos 𝜂
− cos 𝛿 sin 𝜂

0

) 

Note that this is done in the UVW coordinate system, which is why the last term was pre-

multiplied by 𝑇′ and the earlier ones were not.  If we normalize the vectors 
𝑑𝑝

𝑑𝜁
,  

𝑑𝑝

𝑑𝛼
 and 

𝑑𝑝

𝑑𝜂
 to 

vectors 𝑒𝜁, 𝑒𝛼, and 𝑒𝜂, respectively, then the angle 𝜑 from 𝑒𝜁 to 𝑒𝜂 is 

𝜑 = tan−1(𝑒𝜂
′ 𝑒𝛼,  𝑒𝜂

′ 𝑒𝜁) 

Again, when comparing this with Stellarium keep in mind that 𝜂 runs opposite to increasing RA 

so the direction in which the target moves relative to the constant Alt line is at an angle −𝜑.  

For the derotation the direction does not really matter so long as we we adjust the framing 

offset that the user wants accordingly. 

Scilab code 
File: altAz.sce 

mode(0); 
exec "coordinates.sce"; 
 
// Santa Barbara latitude/longitude according to Stellarium 
lat = dms2rad(34, 25, 14.99);       // Santa Barbara latitude in radians 
lon = dms2rad(-119, -41, -53.48);   // Santa Barbara longitude in radians 
 



// Local time in Santa Barbara (set as fixed in Stellarium) 
tz = -8; 
ds = 0; 
y = 2026; 
m = 2; 
d = 13; 
h = 21; 
mi = 0; 
s = 0; 
 
// Capella J2000 
name = "Capella"; 
ra_hms  = [05, 16, 42.4]; 
dec_dms = [45, 59, 49.5]; 
// Dubhe J2000 
name = "Dubhe"; 
ra_hms  = [11, 03, 45.71]; 
dec_dms = [61, 44, 52.7]; 
// Rigel J2000 
name = "Rigel"; 
ra_hms  = [05, 14, 32.86]; 
dec_dms = [-8, -12, -15.0]; 
 
// Convert to radians 
ra  = hms2rad( ra_hms(1),  ra_hms(2),  ra_hms(3)); 
dec = dms2rad(dec_dms(1), dec_dms(2), dec_dms(3)); 
 
[ha, jd, jd2000, njd2000] = ra2ha(ra, lon, tz, ds, y, m, d, h, mi, s); 
ha_hms = rad2hms(ha); 
 
// Convert ha/dec to Alt/Az 
[alt, az, xyz1] = eq2altaz(ha, dec, lat); 
alt_dms = rad2dms(alt); 
az_dms  = rad2dms(az, %t); 
// Convert alt/az back to ha/dec 
[ha1, dec1, xyz2] = altaz2eq(alt, az, lat); 
ha1_hms = rad2hms(ha1); 
dec1_dms = rad2dms(dec1); 
 
// Note:  We implemented the signs to be compatible with Stellarium 
printf("Target: %s\n", name); 
printf("RA  = %g hrs, %g min, %g sec\n",  ra_hms(1),    ra_hms(2),   ra_hms(3)); 
printf("DEC = %g deg, %g min, %g sec\n", dec_dms(1),   dec_dms(2),  dec_dms(3)); 
printf("HA  = %g hrs, %g min, %g sec\n",  ha_hms(1),    ha_hms(2),   ha_hms(3)); 
printf("ALT = %g deg, %g min, %g sec\n", alt_dms(1),   alt_dms(2),  alt_dms(3)); 
printf("AZ  = %g deg, %g min, %g sec\n",  az_dms(1),    az_dms(2),   az_dms(3)); 
printf("DEC1= %g deg, %g min, %g sec\n", dec1_dms(1), dec1_dms(2), dec1_dms(3)); 
printf("HA1 = %g hrs, %g min, %g sec\n",  ha1_hms(1),  ha1_hms(2),  ha1_hms(3)); 
 
[phi] = rotatorAngle(lat, ha, dec, alt, az); 
printf("Angle of HA+ line in (Az+, Alt+) frame = %g degrees\n", 180/%pi*phi); 
 
return 
 
// The code below is an example of how the Alt/Az coordinates change 
// for targets of various declinations. 
 
// Alt/Az speed profiles for stars on the -45 degree hour angle 
az = zeros(91, 91); 
alt = zeros(91, 91); 
for di = [0:90] do 



    for hai = [-45:45] do 
        d = di*%pi/180; 
        ha = hai*%pi/180; 
        [alti, azi] = eq2altaz(ha, d, lat); 
        i = hai+45+1; 
        j = di+1; 
        if (i > 1) then 
            if (azi > az(i-1,j) + %pi) then 
                azi = azi - 2*%pi; 
            end 
            if (azi < az(i-1,j) - %pi) then 
                azi = azi + 2*%pi; 
            end 
        end 
        alt(i, j) = alti; 
        az(i, j) = azi; 
    end 
end 
 
fs = 4; 
 
clf(0); scf(0); plot([-45:45]', alt*180/%pi); 
a = gca();  
a.y_label.text = "Altitude (deg)";  
a.x_label.text = "Hour angle (deg)"; 
a.title.text = "Altitude vs. Hour Angle"; 
a.y_label.font_size = fs; 
a.x_label.font_size = fs; 
a.title.font_size = fs; 
 
clf(1); scf(1); plot([-45:45]', az*180/%pi); 
a = gca();  
a.y_label.text = "Azimuth (deg)";  
a.x_label.text = "Hour angle (deg)"; 
a.title.text = "Azimuth vs. Hour Angle"; 
a.y_label.font_size = fs; 
a.x_label.font_size = fs; 
a.title.font_size = fs; 
 
clf(2); scf(2); plot([-44:45]'-0.5, 0.25*(alt(2:91,:)-alt(1:90,:))*180/%pi); 
a = gca();  
a.y_label.text = "Alt rate (deg/min)";  
a.x_label.text = "Hour angle (deg)"; 
a.title.text = "Altitude rate vs. Hour Angle"; 
a.y_label.font_size = fs; 
a.x_label.font_size = fs; 
a.title.font_size = fs; 
 
clf(3); scf(3); plot([-44:45]'-0.5, 0.25*(az(2:91,:)-az(1:90,:))*180/%pi); 
a = gca();  
a.y_label.text = "Az rate (deg/min)";  
a.x_label.text = "Hour angle (deg)"; 
a.title.text = "Azimuth rate vs. Hour Angle"; 
a.y_label.font_size = fs; 
a.x_label.font_size = fs; 
a.title.font_size = fs; 
 
// Z12 Alt/Az speed analysis 
D1 = 630;                // Az board diameter in mm 
r1 = D1/2;               // Radius 
dpm = 4;                 // Degrees per minute (see speed profile) 



l1 = 2*%pi*r1*(dpm/360); // Travel in mm/min at the base wheel circumference 
rpm = 2;                 // Motor external axis RPM 
r2 = l1/(2*%pi*rpm);     // Radius required to achieve l1 at 2 rpm 
D2 = 2*r2;               // Diameter required 

 

File: coordinates.sce 

/////////////////////////////////////////////////////////////// 
// Coordinate transformation between equatorial and Alt/Az. 
/////////////////////////////////////////////////////////////// 
// ha       = hour angle (0 at South meridian, positive towards West) 
// dec      = declination (-90 at SCP to +90 at NCP) 
// lambda   = latitude (of the observer) 
// az       = Azimuth (0 at North meridian, positive towards the East) 
// alt      = Altitude (0 at horizon, positive towards zenith) 
// Positive x = towards the West 
// Positive y = towards the South 
// Positive z = towards the zenith 
// 
// We start with a right-handed Cartesian XYZ coordinate system where 
// Z is pointing to the NCP and where the observer at latitude lambda 
// is in the YZ plane.  Let the basis of the coordinate system be 
// the unit vectors in each direction {ex, ey, ez}. 
// 
// Next, we define a right-handed Cartesian UVW coordinate system  
// with corresponding natural base vectors {eu, ev, ew} where 
// eu = ex and ev and ew are ey and ez rotated around the X axis 
// over an angle pi/2 - lambda such that ew points at zenith at 
// latitude lambda.  Thus, if we define s = sin(lambda) and  
// c = cos(lambda), then ev = s*ey - c*ez and ew = c*ey + s*ez. 
// In matrix notation, [ev,ew] = [ey,ez]*[s,c;-c,s]. 
// 
// A vector p has representations in both coordinate systems 
// p = [ex ey ez]*[x;y;z] = [eu ev ew]*[u;v;w].  If we define  
// T = [1,0,0; 0,s,c; 0,-c,s] then [eu, ev, ew] = [ex, ey, ez]*T  
// therefore [x;y;z] = T*[u;v;w].  Note that T is orthogonal, so 
// inv(T) = T'. 
// 
// Let us define polar coordinates in hour angle (ha) and 
// declination (dec) such that in the XYZ coordinates we have 
// [x;y;z] = [cos(dec)*sin(ha); cos(dec)*cos(ha); sin(dec)]. 
// Let us also define polar coordinates in Azimuth (az) and  
// Altitude (alt) such that in the UVW coordinates we have 
// [u;v;w] = [cos(alt)*sin(az-%pi); cos(alt)*cos(az-%pi); sin(alt)]. 
// The minus sign for u and v is because az = 0 points North 
// whereas ha = 0 points South. 
// 
// These relationships let us convert ha/dec to alt/az and vice versa. 
// Summarized, 
// c = cos(lambda), s = sin(lambda), T = [1,0,0; 0,s,c; 0,-c,s] 
// [x;y;z] = T*[u;v;w] 
// [x;y;z] = [cos(dec)*sin(ha); cos(dec)*cos(ha); sin(dec)] 
// [u;v;w] = [-cos(alt)*sin(az); -cos(alt)*cos(az); sin(alt)] 
 
// Radians to degrees, minutes, seconds (0-360 degrees) 
// This is usually used for DEC where we can have negative 
// signs, but not for Az calculations that are positive 
function dms=rad2dms(r, positive) 
    if ~exists('positive', 'l') then 



        positive = %f; 
    end 
    r = modulo(r, 2*%pi); 
    if positive & (r < 0) then 
        r = r + 2*%pi; 
    end 
    deg = r*180/%pi;    // Radians to degrees 
    d = int(deg);       // Truncate degrees 
    mf = deg - d;       // Minutes fraction 
    m = int(60*mf);     // Truncate minutes 
    sf = mf - m/60;     // Seconds fraction 
    s = 3600*sf;        // Seconds 
    dms = [d, m, s]; 
endfunction 
 
// Radians to hours, minutes, seconds (0-24 hours) 
// Note: 1 hour = 15 degrees = 60 minutes(4 minutes per degree) 
//       as opposed to the usual 60 minutes per degree 
function hms=rad2hms(r) 
    r = modulo(r, 2*%pi); 
    if r < 0 then 
        r = r + 2*%pi; 
    end 
    deg = r*180/%pi;    // Radians to degrees 
    h = int(deg/15);    // Truncate hours 
    hf = (deg - 15*h)/15;  // Hour fraction 
    m = int(60*hf);     // Truncate minutes 
    sf = hf - m/60;     // Seconds fraction 
    s = 3600*sf;        // Seconds 
    hms = [h, m, s]; 
endfunction 
 
// Degrees, minutes, seconds to radians 
function r=dms2rad(d, m, s) 
    r = (%pi/180)*(d + m/60 + s/3600); 
endfunction 
 
// Hours, minutes, seconds to radians 
// Note: 1 hour = 15 degrees = 60 minutes(4 minutes per degree) 
//       as opposed to the usual 60 minutes per degree 
function r=hms2rad(h, m, s) 
    r = (%pi/180)*(h + m/60 + s/3600)*15; 
endfunction 
 
// Equatorial to Alt/Az 
function [alt, az, xyz]=eq2altaz(ha, dec, lambda) 
    // c = cos(lambda), s = sin(lambda), T = [1,0,0; 0,s,c; 0,-c,s] 
    // [x;y;z] = T*[u;v;w] 
    // [x;y;z] = [cos(dec)*sin(ha); cos(dec)*cos(ha); sin(dec)] 
    // [u;v;w] = [cos(alt)*sin(az-%pi); cos(alt)*cos(az-%pi); sin(alt)] 
    c = cos(lambda); 
    s = sin(lambda); 
    T = [1,0,0; 0,s,c; 0,-c,s]; 
    xyz = [cos(dec)*sin(ha); cos(dec)*cos(ha); sin(dec)]; 
    uvw = T'*xyz; 
    u = uvw(1); v = uvw(2); w = uvw(3); 
    alt = asin(w); 
    az = atan(u, v) + %pi; 
endfunction 
 
// Alt/Az to equatorial 



function [ha, dec, xyz]=altaz2eq(alt, az, lambda) 
    // c = cos(lambda), s = sin(lambda), T = [1,0,0; 0,s,c; 0,-c,s] 
    // [x;y;z] = T*[u;v;w] 
    // [x;y;z] = [cos(dec)*sin(ha); cos(dec)*cos(ha); sin(dec)] 
    // [u;v;w] = [cos(alt)*sin(az-%pi); cos(alt)*cos(az-%pi); sin(alt)] 
    c = cos(lambda); 
    s = sin(lambda); 
    T = [1,0,0; 0,s,c; 0,-c,s]; 
    uvw = [cos(alt)*sin(az-%pi); cos(alt)*cos(az-%pi); sin(alt)]; 
    xyz = T*uvw; 
    x = xyz(1); y = xyz(2); z = xyz(3); 
    dec = asin(z); 
    ha = atan(x, y); 
endfunction 
 
/////////////////////////////////////////////////////////////// 
// RA to hour angle 
/////////////////////////////////////////////////////////////// 
function n=days_since_2000(y, m, d) 
    n1 = int((y+3-2000)/4);     // Leap years since 2000 
    n2 = (y - 2000 - n1);       // Non-leap years since 2000 
    // Cumulative days up to a give month (as array index) 
    if (modulo(y, 4) == 0) then 
        md = [0 31 60 91 121 152 182 213 244 274 305 335]; 
    else 
        md = [0 31 59 90 120 151 181 212 243 273 304 334]; 
    end 
    n = n1*366 + n2*365 + d + md(m) - 1; 
endfunction 
 
function [jd, njd]=julianDate2000(y, m, d, tz, ds, y, m, d, h, mi, s) 
    // The time parameters are the local time.  The correction for 
    // local time to UTC time is most easily done in the Julian date, 
    // so we first calculate the Julian date pretending as if it's the  
    // UTC time and later apply the correction to local time. 
    // https://en.wikipedia.org/wiki/Julian_day#Julian_day_number_calculation 
    // 
    // Cumulative days up to a given month, indexed by month 
    if (modulo(y, 4) == 0) then 
        md = [0 31 60 91 121 152 182 213 244 274 305 335]; 
    else 
        md = [0 31 59 90 120 151 181 212 243 273 304 334]; 
    end 
    // Pretend as if the time parameters represent UTC time 
    // Days since 2000 Jan 1 0:00 
    n1 = int((y+3-2000)/4);     // Leap years since 2000 
    n2 = (y - 2000 - n1);       // Non-leap years since 2000 
    njd = n1*366 + n2*365 + d + md(m) - 1; 
    // Correct njd for the difference between local and UTC time 
    h = h - tz - ds; 
    if h > 23 then 
        njd = njd + 1; 
        h = h - 24; 
    end 
    if h < 0 then 
        njd = njd - 1; 
        h = h + 24; 
    end 
    // Convert UTC time (base = 0:00) to Julian time (base = 12:00) 
    h = h - 12; 
    if h < 0 then 



        njd = njd - 1; 
        h = h + 24; 
    end 
    jd = njd + (h + mi/60 + s/3600)/24; 
endfunction 
 
function [jd, jdn]=julianDate1(y, m, d, tz, ds, y, m, d, h, mi, s) 
    // Crazy formula for Julian date from UTC time - not used yet 
    // https://en.wikipedia.org/wiki/Hour_angle#Relation_with_right_ascension 
    tmp0 = int((m-14)/12); 
    tmp1 = int((1461*y + 4800 + tmp0)/4); 
    tmp2 = int((367*(m-2-12*tmp0))/12); 
    tmp3 = int(3*int((y+4900+tmp0)/100)/4); 
    jdn = tmp1 + tmp2 - tmp3 + d - 32075; 
    jd = jdn + (h-12)/24 + mi/1440 + s/86400; 
endfunction 
 
function [ha, jd, jd2000, njd2000]=ra2ha(ra, lon, tz, ds, y, m, d, h, mi, s) 
    // 1) Equinox is when day and night are equally long, when the plane 
    //    of the Earth's equator passes through the center of the sun. 
    //    Equinoctal point: location of the sun during an equinox. 
    //    Vernal equinoctal point: RA=0, longitude=0. 
    //    Autumnal equinoctal point: RA=12h, longitude=180. 
    // 2) A siderial day is the time it takes Earth to make one rotation 
    //    relative to the vernal equinox: 23 hours, 56 minutes, 4.0916  
    //    seconds (23.9344699 hours or 0.99726958 mean solar days). 
    //    Apparent siderial time = hour angle of the vernal equinox. 
    //    The mean sidereal time accounts for the Earth's nutation. 
    //    Apparent and mean sidereal time differ by at most 1.2 seconds. 
    //    GMST = Greenwich mean sidereal time. 
    // 3) The Julian Day Number (JDN) is the integer assigned to a whole  
    //    solar day in the Julian day count starting from noon Greenwich  
    //    Mean Time, with Julian day number 0 assigned to the day starting  
    //    at noon on January 1, 4713 BC, proleptic Julian calendar  
    //    (November 24, 4714 BC, in the proleptic Gregorian calendar). 
    //    For example, the Julian day number for January 1, 2000,  
    //    was 2451545. 
    // 4) UT1 is proportional to the rotational angle of the Earth 
    //    relative to the ICRF (International Celestial Reference Frame). 
    //    ERA = Earth's Rotational Angle. 
    //    ERA = 2*pi*(0.7790572732640 + 1.00273781191135448*TU) radians 
    //    where TU =  (Julian UT1 date - 2451545.0). 
    //    GMST = 18.697374558 + 24.06570982441908 * D where D is the  
    //    interval, in UT1 days including any fraction of a day, since  
    //    2000 January 1, at 12h UT. 
 
    // Julian date since 2000 Jan 1, noon UTC 
    // https://en.wikipedia.org/wiki/Julian_day#Julian_day_number_calculation 
    [jd2000, njd2000] = julianDate2000(y, m, d, tz, ds, y, m, d, h, mi, s); 
    jd = jd2000 + 2451545.0; 
 
    // Earth rotation angle 
    // https://en.wikipedia.org/wiki/Sidereal_time#Earth_rotation_angle 
    era = 2*%pi*(0.7790572732640 + 1.00273781191135448*jd2000); 
     
    // Hour angle - we simply take the era and ignore precession / nutation 
    // https://en.wikipedia.org/wiki/Hour_angle#Relation_with_right_ascension 
    ha = era + lon - ra; 
    ha = modulo(ha, 2*%pi); 
    if ha < 0 then 
        ha = ha + 2*%pi; 



    end 
endfunction 
 
function [phi]=rotatorAngle(lat, ha, dec, alt, az) 
    c = cos(lat); 
    s = sin(lat); 
    T = [1,0,0; 0,s,c; 0,-c,s];     // [x;y;z] = T*[u;v;w] 
     
    // Find the normalized tangent to the target's orbit in UVW coordinates 
    xyz = [cos(dec)*sin(ha); cos(dec)*cos(ha); sin(dec)]; 
    uvw = T'*xyz; 
    d_ha = T'*[cos(dec)*cos(ha); -cos(dec)*sin(ha); 0]; 
    d_ha = d_ha/norm(d_ha); 
     
    // Find the Az motion of the camera sensor in UVW coordinates 
    uvw = [cos(alt)*sin(az-%pi); cos(alt)*cos(az-%pi); sin(alt)]; 
    d_az = [cos(alt)*cos(az-%pi); -cos(alt)*sin(az-%pi); 0]; 
    d_az = d_az/norm(d_az); 
    d_alt = [sin(alt)*sin(az); sin(alt)*cos(az); cos(alt)]; 
     
    // Angle between d_ha and d_az 
    d_ha_az = d_ha'*d_az; 
    d_ha_alt = d_ha'*d_alt; 
    phi = atan(d_ha_alt, d_ha_az); 
    // Note: HA increases in the opposite direction to RA because the 
    //       ha=0 meridian (local South) moves towards the East in RA. 
endfunction 

 


