Tracking errors due to polar misalignment of EQ mounts

We will use Cartesian coordinate systems for the transformation from a basis that is fixed relative to the
sky, to telescope coordinates. The transformations between them will be defined by orthogonal
matrices to simplify the math. For convenience, assuming orthogonal base vectors, we refer to the
bases by orthogonal matrices that have the XYZ base vectors as columns. We use subscripts for these
matrices to refer to the various bases and the transformations between them.

Going from one orthogonal basis to the next changes the coordinates as follows. If the base vectors are
the columns of a matrix M then any vector v is represented as v = Mm where m contains the
coordinates in that basis. If we switch to another basis that are the columns of a matrix N defined as

N = MT where T is orthogonal, then v = Mm = MTT'm = Nn where the coordinates of v in N are

n = T'm. Our coordinate transformations will all be composed from basic Given’s rotations.

An appropriate representation of the night sky is the unit sphere with an infinitesimally small Earth at its
center. For small angles, Euclidian distances on the unit sphere correspond with radians, which is
convenient. For lack of a better term, let us refer to the Cartesian coordinate system that is fixed
relative to the sky and where the Z axis is pointing to the NCP?, as the universe coordinate system.
Where the X and Y axes are pointing can be chose arbitrarily so long as the XYZ system is right-handed.

The subsequent bases for going from universe to telescope coordinates are as follows:

o Universe: Assume that Earth is at a fixed point in time ¢t, say, t = 0 when we start observing
and perform our polar alignment. Our first basis M, is chosen such that the Z axis points to the
NCP, XYZ is right-handed and the observer’s location is on the XZ plane.

e Observer on Earth: Our second basis M, rotates M; around the Y axis over anangle 1. = g -1

where A is the latitude of the observer in radians. The direction of this rotation is such that the
positive Z axis rotates towards the positive X axis. In this basis, Z points at zenith in the
observer’s coordinate system and the XY plane is aligned with the horizon. The negative X axis
points North in the YZ plane below the NCP, and the positive Y axis points East. Let this
transformation be defined by M, = M, T,.

e Earth’s rotation: Our third basis M5 rotates M, around the Z axis of M; (points at the NCP)
Eastward (positive X axis moves towards positive Y axis) in function of time at an angle wt where
w is Earth’s angular rotation velocity relative to the universe. This is suitable for describing how
we experience the skies from our observing location at any point in time. Let this
transformation be defined by M3 = M, Ts;.

e Polar (mis)alignment: Our fourth basis M, is that of the mounted telescope with Z defined as
the RA axis of the mount. For this, we first rotate M5 around the Y axis back over an angle A, +
& then around the rotated X axis of M, over an angle n (the positive direction is from the
positive Z axis to the positive Y axis), where & and 1 represent the polar misalignment errors.

1 Sorry, we will assume the Northern hemisphere only and not consider the SCP and East/West orientations for the
Southern hemisphere.

Note that these angles are Euler angles defined by chained rotations, not polar coordinates. Let
this transformation be defined by M, = M3T,.

e RA axis rotation: Our fifth basis Mz is where we rotate M, around its Z axis over an angle wt
Westward. This represents the tracking of the telescope just using its RA motor. Let this
transformation be defined by M5 = M, Ts.

To find the effect of polar misalignment of an object in the sky we then simply transform its coordinates
from M; to M5 = M T,T3T,Ts and study its behavior in function of time. The rotation matrices are as

follows:
<cos/1 0 sm/l)
—sin A, 0 cos i
cos Ac 0 —sml coswt —sinwt 0 Cos/l 0 sin A,
T3=< 0)(smwt coswt >< 0)
sin/, 0 cosl —sin A, 0 cos A,

cosf 0 - smf 0
<) < cosn sinn)
siné 0 cosf —sinn cosn

coswt sinwt
Ts =| —sinwt coswt 0

0 0 1

0

cos A, 0 —sin /1
7, = (
sin/, 0 cos /1

Positive £ corresponds with the positive Z axis moving towards the negative X axis (moving North), and
positive 1 corresponds with the Z axis moving towards the positive Y axis (moving East). The
transformations from the M; (universe) basis to the M5 (mount) basis is given by T = T,T;T,Ts, which
simplifies to

coswt —sinwt 0\ /cosé 0 —siné 1 0 0 coswt sinwt 0
T=|sinwt coswt O 0 1 0 0 cosnpy sinn —sinwt coswt 0
0 0 1/ \siné 0 cosé& 0 —sinn cosny 0 0 1

The base transformation is Ms = M; T and the mount coordinates are T’ times the universe coordinates.
In the natural Cartesian M, basis we would have M; = and M5 =T.

Note that when & = 11 = 0 we have perfect tracking thus M; = Ms and T = I. Note also that the
observer’s latitude has completely dropped out of the result.

Thus, a target on the unit sphere in universe coordinates

y(@,¢) | = sindsing

x(¥, @) (Sinﬁ cos (p)
z(9,p) cosV

has mount coordinates

x(¥, p)
P, p,t,&,n) =T(w,t,&,n)' | ¥y©, 9)
z(9,)

Test points for a camera

Let the target have universe coordinates (9, ¢):

X sin Y, cos @
(yo) = (sinﬁo sin g00>
Zg cos Y

Note that we can write this as an Euler rotation of the Z axis unit vector of the mount coordinate system

sindy cos @ cos@, —sing, 0\ /cosd 0 sindy\ /0
sindg sing, | = <sin ®o COS @, 0) < 0 1 0) (0)
cosd,’ 0 0 1/ \=sin9y 0 cosdy/ \1

For a camera sensor of size w X h and a telescope of focal length F, Let us define the projection of the
corners of the camera sensor around the Z axis on the unit sphere as

2/

We can then apply the same transformation to the corners to center the camera’s FOV around the
target. Applying P(9, @, t, &, 1) to these test points yields the star trails fromt = 0tot = T. After this
we convert the result back to universe coordinates by pre-multiplying the trails with T (w, 0, £, 1) that
also make the starting points of the trails coincide for each test point. We then flip the result back up to

the tangent plane of the unit sphere at the Z axis by applying the transpose (inverse) of the above
transformation, and select the Y coordinate as the X coordinate in 2D, and minus the X coordinate as the
Y coordinate in 2D. Finally, we plot the 2D trails and calculate their statistics over the set of
misalignment angles.

Drift and field rotation

Let (9, @) be the spherical coordinates of any point of interest, for instance the target or the corners of
the camera’s FOV. The uncontrolled drift of the object from t = 0 to t = T, using the start and end
points only, is then defined as

D(ﬁ,(p,T,f,T]) = P(ﬁJP:T:f:’?) _P(ﬁl(plorfrn)

The term uncontrolled indicates that no control is applied to keep the central object in the FOV in its
place.

Let us consider the controlled case where the central object remains fixed by perfect tracking and/or
autoguiding and where the only drift is field rotation in the corners of the FOV. We can create this
situation by subtracting the drift of the target from the drift of all test points:

E(ﬁ: (p; t) E) r]) = P(ﬁl (pl t) E' 77) - P(ﬁol (pOI t' E’ 77)

The field rotation is then described by how the difference between start and end point,

F(ﬁ;ﬁo;T;f;n) = E(ﬁJQDJTpfprI) _E(ﬁl(plolfln)

These error trails are in 3D near the unit sphere. We can transform them to 2D trails in the same way as
described in the previous section.

When people talk about polar misalignment, they usually mean the magnitude in no particular direction.
The tracking errors depend significantly on that direction. Since it is not easy for a user to know in what
direction the RA axis is misaligned, we can take the RMS over a number of polar misalignment angles

(¢ 1) as described above with a Euclidian norm equal to a given polar misalighment magnitude and
return the RMS value of the tracking errors as our error measure.

Example

As an example, let us consider a telescope of 750 mm focal length with a 36x24 mm camera sensor. The
observer is at A = 34 degrees latitude and the target coordinates as seen by the observer are an
altitude of « = 70 degrees and an azimuth of { = 100 degrees. The polar misalignment magnitude is

6 = 2 arc minutes and the exposure time is T = 300 seconds. How big are the star trails in the corners
of the image (on average for all possible directions of polar misalignment)?

Our analysis requires the target location in the M; basis while our problem gives it in the M, basis, so
first we have to transform it back. Inthe M, coordinate system we have spherical coordinates 9, =

= (90 —) radians and ¢, = L(180 — {) radians. Its Cartesian coordinates in the M, basis are

180 180
X sin 9, cos ¢,
Y2 | = sind, sing,
Z2 cos Y,

The Cartesian coordinates in the M; basis are

X X2 sind cos ¢
<y> =Ty(Y2 | = sindsing
z Z2 cos v
This also yields the spherical coordinates (9). Alternatively, we can simply assume that the
equatorial Dec and HA coordinates are known and convert them to spherical coordinates, which is

easier. We just wanted to illustrate a common setup for a user on the ground with his horizon and
meridian.

We want to find how the polar misalignment affects the target and the corners of the camera’s FOV
centered around it. For this, note that the target is the result of two rotations acting on the NCP:

X sind cos @ cosp —sing 0 cosd 0 sind\ /0
<y> = (sinz? sin<p> = <singo cos @ 0)(0 1 0 ><0>
z cos Y 0 0 1/ \=sind 0 cosd¥/ \1

To add the corners of the camera’s FOV we can define a sensor projection on the unit circle around the
NCP. Let w and h be the sensor width and height, respectively. If F is the focal length of the telescope,

this corresponds with angular values % and zina small-angle approximation. The matrix S defined as

1/~h —h h h w
szl w)/
1 1 1 1 1

has columns that define this projection centered around the Z axis with the long side parallel to the Y
axis. The columns of the matrix

cosp —sing 0 cosd 0 sind 0
M=|sing cosp 0 0 1 0 0]s §
0 0 1/ \=sind 0 cosd 1

are then the target and the corners of the camera’s FOV centered around the target with the long side
parallel to the XY plane. These are the points that we want to test for polar misalignment.

Note that we can write

X sind cos ¢ cosp —sing 0 cosd 0 sind\ /0
(y) = (sinﬁ sin(p> = <sing0 cos @ 0)(0 1 0 ><O>
z cosV 0 0 1/ \=sind 0 cosd¥/ \1

On those corners, and the target itself, we can now run the error formula for a suitable range of values
for (¢ 7) and calculate the statistics. The results, uncontrolled, are shown below.

We have not discussed how to project the field rotation F (9, @, T, &,1) on the tangent plane to the unit
sphere at (9, ¢). With the transformation above, this is the projection on the XY plane (also accounting
for some sign and coordinate swaps of XY after rotating upwards):

0 1 on[Cos¢ -~ sinp O cosd 0 sind
(_1 0 0) (sincp cos @ 0)(0 1 0)F(z?,q),T,E,n)
0 0 1/ \=sind 0 cosd

This corresponds with the errors displayed in the pictures that follow. For D(9, ¢, T, &, 1) we do the
same although the radial component is negligible relative to its size.

The first result is the uncontrolled case leading to an error RMS of 2.05”. The entire FOV is shown. The
errors are visible and look similar at all 5 points. An RMS value of 2.05” over 5 minutes is 0.41” per
minute, which is easy for an autoguider to correct. Still, alignment is recommended because you don’t
want an autoguider to work harder than it should.

7

PA emror=120", uncontrolled, focal length=750 mm, sensor=36x24 mm,
(Latitude,Alt,Az)=(34,70,100) degrees, (Dec,HA)=(28,-22) degrees,

T=300 sec, yields a star trail RMS of 2.05" (over 12 PA angles)
4000

3500

3000 -

2500

2000 -

1500 —

1000 —

500 H

-500 +

Y (arc seconds)
o
1
o

-1000

-1 500

-2000 -

-2 500 -

-3000 -

-3 500 -

-4 900 4—4rmm—mmo"r-—ao-"——P—"-—Hr—"r-—-"r—---r—-—————v—
5000 -4000 -3000 2000 -1000 0 1000 2000 3000 4000 5000

X (arc seconds)

A zoomed-in version for the target (center of FOV) is shown below. Notice how much the tracking error
varies across polar misalignment angles, and how large it is.

PA error=120", uncontrolled, focal length=750 mm, sensor=36x24 mm,
(Latitude,Alt,Az)=(34,70,100) degrees, (Dec,HA)=(28,-22) degrees,

T=300 sec, yields a star trail RMS of 2.04" (over 12 PA angles)
-329%

-3296.5

-3297 H

-3297.5

-3298 H

-3298.5

-3299

Y (arc seconds)

-3299.5

-3300

-3300.5

-3301

-3 301.5

-3302 . , . ,
4947 4948 4949

X (arc seconds)

Below is a picture of the controlled situation over the entire FOV. Clearly the errors have been reduced
drastically, to the point where one would have to zoom into the corners twice to spot any sign of field
rotation. The tracking errors are now just due to field rotation, and are reduced from 114” to just 2.6”!

PA error=120", confrolled, focal length=750 mm, sensor=36x24 mm,

(Latitude,Alt,Az)=(34,70,100) degrees, (Dec,HA)=(28,-22) degrees,

T=300 sec, yields a field rotation RMS of 0.05" (over 12 PA angles)
4000

3500

3000

2500

2000 -

1500

1000 -

500 —

-500

Y (arc seconds)
o
1
o]

-1000
-1500 —
-2000
-2500 —
-3 000 —

o]
-3 500 —

400 4—~—r+—+—Fr—"+—Fr——p—+—F—""—"FT—""— 71— 77
5000 4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

X (arc seconds)

This is a zoomed-in view of the field rotation errors in the corners. The colors are overlapping, which
makes it a bit hard to discern them but the direction shows how they rotate around the center.

rc seconds)

&

Y

Y (arc seconds)

3298.92

Error RMS= 0.05"

3298.9 o

3298.88

3298.86 —

3298.84

3298.82

)2'

3298.8

-4948.3

X (arc seconds)

Error RMS= 0.05"

-3298.8

-3298.82

-3298.84

-3298.86

-3298.88

-3298.9

-3298.92

X

-4948.3

X (arc seconds)

rc seconds)

&

Y

Y (arc seconds)

3298.92

Error RMS= 0.05"

3298.9 -

3298.88 —

3298.86 —

3298.84 —

3298.82 o

3298.8

-3298.8

4948.3

X (arc seconds)

Error RMS= 0.05"

-3298.82

-3298.84

-3298.86

-3298.88

-3298.9

-3298.92 Q{

4948.3

X (arc seconds)

Approximation for small polar misalignment angles

For small (¢ 7) the approximation to first order is

coswt —sinwt 0\/1 0 =& /1 0 O coswt sinwt 0
Ms =~ | sinwt coswt O(0 1 O 0 1 n||{-sinwt coswt 0

0 0 1/\¢ 0 1/\0 —, 1 0 0 1
coswt —sinwt 0\ /1 0 —&\ /coswt sinwt 0
~ (sin wt coswt 0) <0 1 7) (— sinwt coswt 0)
0 0 1/\¢ —1n 1 0 0 1
coswt —sinwt 0 cos wt sin wt -
= (sin wt coswt 0)(— sin wt cos wt n >
0 0 1/ \écoswt +nsinwt Esinwt—ncoswt 1
1 0 —&coswt —nsinwt
= (0 1 —&sin wt + 1 cos a)t)
Ecoswt +nsinwt € sinwt —n cos wt 1

Thus, the observed track P (9, @, w, &, 1) is approximated by

X x — z(¢ cos wt + 1 sin wt)
P, 9,t,&n) =Ms <y> =~ y + z(n cos wt — € sin wt)
z z + (x§ — yn) coswt + (xn + y&) sinwt

For small polar misalignment angles this approximation is quite good, and it allows us to use analytical
expressions that are not overly complex.

Relationship to other coordinate systems

We already mentioned the spherical coordinate system. It is defined by angles (9 @) where 9 is the
angle between a vector and the Z axis, and where ¢ is the angle between the X axis and the projection
of a vector on the XY plane, positive in the direction where the positive X axis rotates towards the
positive Y axis.

The equatorial coordinate system defines the declination (Dec) angle as g — 1 in degrees, and the hour

angle (HA) as —¢ if the X axis were pointing at the meridian, expressed in hours. The home position of
equatorial mounts is defined by an HA value of 6 hours. This means that the RA axis must rotate 90
degrees or 6 hours towards the West to allow the Dec axis to rotate the telescope along the meridian.
We will not need the definition of right ascension (RA) for our purposes and can avoid talking about
equinoxes. It will be convenient to assume that the X axis is aligned with the meridian.

While we just concluded that the location of the observer is irrelevant, we had to define the coordinate
system M, in which the observer’s telescope is located, and talked about the Alt/Az coordinate system.
The altitude (Alt) coordinate is the angle between the horizontal plane and the target. The azimuth (Az)
is the angle between the projection of the NCP on the horizontal plane and the projection of the target

on the horizontal plane, positive in the direction from East to South. Both are expressed in degrees.
Thus, Az=180 degrees corresponds with HA=0 hours (the meridian), and the positive direction of Az and
HA is the same.

Scilab code

This code shows the effect of polar misalignment given the Alt/Az target at a given latitude. The
parameters can be changed in the lines at the top. While it is not too difficult to change the code to
start from HA/Dec coordinates, any planetarium program provides easy conversions to Alt/Az. Install
Scilab, save this code as a .sce file, load it in the editor and hit F5.

d2r = %pi/180; // Degrees to radians
r2d = 1/d2r; // Radians to degrees
s2r = d2r/3600; // Arc seconds to radians
r2s = 1/s2r; // Radians to arc seconds

/11000700 /// USER PARAMETERS //////////////////////

w = 36; // Sensor width in mm

h = 24; // Sensor height in mm

f1 = 750; // Focal length

lambda = d2r*34; // Latitude in radians

delta = s2r*120; // Polar misalignment magnitude

alpha = d2r*70; // Target altitude in observer frame
zeta = d2r*100; // Target azimuth in observer frame
omega = 2*%pi/ (24*3600); // Earth's angular velocity

tau = 300; // Exposure time in seconds

npa = 12; // Number of polar misalignmeent angles

N S VIV a

function [theta, phi]=c2s (xyz)
// Cartesian to spherical coordinates
// xyz can be a matrix where tje columns are the 3D vectors
[m,n] = size(xyz);
phi = zeros(n,1);
for i = n do
x = xyz(l,1);
y = xyz(2,1);
z = xyz(3,1);
theta = acos(z);
if sin(theta) <> 0 then
phi(i) = acos(x/sin(theta));
else
phi(i) = 0;

end
end
endfunction

function [xyz]=s2c (theta, phi)
// Spherical to Cartesian coordinates
// theta and phi can be vectors

n = length (theta);
for i = 1:n do
xyz(:,1) = [sin(theta(i))*cos(phi(i)); sin(theta(i))*sin(phi(i)); cos(theta(i))];
end
endfunction

function [T ksi, T eta]=paMisalignment (ksi, eta)
// Polar misalignment from Euler angles
// Rotate around Y (positive is from X+ to Z+)

c = cos(ksi);
s = sin(ksi);
T _ksi = [c,0,-s; 0,1,0; s,0,cl;

// Rotate around X (positive is from Z+ to Y+)

c = cos (eta);

s = sin(eta);
T eta = [1,0,0; 0O,¢c,s; 0,-s,cl;
endfunction

function [T_theta, T_phi]=ncpToTarget (theta, phi)
// Rotation matrices from [0;0;1] to target in spherical coordinates
c = cos (theta);

s = sin(theta);

T theta = [c,0,s; 0,1,0; -s,0,cl;

c = cos(phi);

s = sin(phi);

T phi = [c¢,-s,0; s,c,0; 0,0,1];
endfunction

function [trail, trail2d]=trackingError (omega, tau, pa, thetal, phiO, w, h, f1l, control)
// trail: 4D matrix of trails on the unit sphere
// trail2D: 4D matrix of trail projection on tangent plane to unit sphere
// omega: Earth's angular velocity
// tau: Time period (exposure time)
// pa: Polar misalignment Euler angles
// thetal, phiO: Spherical coordinates of target
// w,h: Camera sensor width and height
// fl: Focal length of telescope
// control: %t for exact target tracking otherwise $f

t = [0; tau]; // Time line (begin and end point are enough)
nt = length(t);

npa = size(pa, 1);

trail = zeros (3, nt, 5, npa);

trail2d = zeros (2, nt, 5, npa);

// Corners in universe coordinates centered around the target
dh = h/ (2*£f1);
dw = w/ (2*£1);

corners = [-dh,-dh,dh,dh;-dw,dw, -dw,dw; 1,1, 1,1]/norm([dh;dw;1]);
[T _theta, T phi] = ncpToTarget (theta0, phiO);

// Test points (target and FOV corners) in universe coordinates
points = [s2c(thetal, phiO), T phi*T theta*corners];

for ipa = 1:npa do
// Transformation matrix from universe to mount at t=0

[T ksi, T eta] = paMisalignment (pa(ipa,l), pa(ipa,?2));
TO = T ksi*T eta;
for i = 1:5 do

for it = 1:nt do
c = cos (omega*t (it));
s = sin(omega*t (it));
T t = [¢,s5,0; -s,¢,0; 0,0,1];
T = T t'*T ksi*T eta*T t;
if control then

trail(:,it,i,ipa) = TO*T'*points(:,i) - TO*T'*points(:,1);
else
trail(:,it,i,ipa) = TO*T'*points(:,1);
end
// Rotate back to NCP then project on XY plane and swap 2D coordinates
trail2d(:,it,i,ipa) = [0,1,0;-1,0,0]1*T theta'*T phi'*trail(:,it,1i,ipa);
end
end
end
if control then
trail(:, :, 1, :) =0
end
endfunction

// Transformation matrix from universe to observer basis

// Observer 1is at latitude lambda on the meridian (XZ plane)
// Target is at (Alt, Az) from the observer's viewpoint
lambda ¢ = “pi/2 - lambda;

c = cos(lambda_c) ;

s = sin(lambda c);

T obs = [c,0,s; 0,1,0; -s,0,cl;

// Calculate the spherical observer coordinates

theta2 = “pi/2 - alpha; // Spherical coordinate theta is 90 - alt
phi2 = %“pi - zeta; // Az increases from 0 at -X to 90 at Y
xyz2 = s2c(theta2, phi2);

// Transform to universe coordinates

xyz = T obs*xyz2;

// Calculate the spherical universe coordinates

[theta0, phiO] = c2s(xyz);

pa = [O:npa-1]"'*2*%pi/npa; // Polar misalignment angles
pa = [sin(pa), cos(pa)]l*delta; // Matrix of (ksi, eta) Euler angles

// Uncontrolled tracking
[trail, trail2d] = trackingError (omega, tau, pa, thetaO, phiO, w, h, f1, =f);

// Plot of target and FOV corner trails (uncontrolled).
figl = scf(l); clf();

var = 0;
nData = 0;
for i = 1:5 do
x2d = zeros (Z2,npa);

y2d = zeros (Z2,npa);
for ipa = 1:npa do
tmp = r2s*trail2ad(:,:,1i,ipa);
x2d(:,ipa) = tmp(l,:)"';
y2d(:,ipa) = tmp(2,:)";
// Statistics
tmp = tmp(:,2) - tmp(:,1);
var = var + tmp'*tmp;
nData = nData + 1;
end
plot(x2d, y2d, 'o-");
end
xlabel ("X (arc seconds)");
ylabel ("Y (arc seconds)");

txt = sprintf ("PA error=%d"", uncontrolled, focal length=%d mm, sensor=%dx%d mm,\n" +
"(Latitude,Alt,Az)=(%d, %d, %d) degrees, (Dec,HA)=(%d,%d) degrees,\n" +
"T=%d sec, yields a star trail RMS of %6.2f"" (over %d PA angles)",

r2s*delta, fl, w, h, r2d*lambda, r2d*alpha, r2d*zeta,

r2d* (¢pi/2-thetal), -r2d*phi0, tau, sqgrt (var/nData), npa);
title (txt);
figl.children(l).isoview = "on";

// Plot of target trails (uncontrolled)
fig2 = scf(2); clf();
var = 0;
nData = 0;
x2d = zeros (2,npa);
y2d = zeros (2,npa);
for ipa = l:npa do
tmp = r2s*trail2d(:,:,1i,ipa);
x2d (:,1ipa) = tmp(l,:)"';
y2d(:,ipa) = tmp (2, :)"';
// Statistics
tmp = tmp(:,2) - tmp(:,1);
var = var + tmp'*tmp;
nData = nData + 1;
end
plot (x2d, y2d, 'o-');
xlabel ("X (arc seconds)");
ylabel ("Y (arc seconds)");

txt = sprintf ("PA error=%d"", uncontrolled, focal length=%d mm, sensor=%dx%d mm,\n" +
"(Latitude,Alt,Az)=(%d, %d, %d) degrees, (Dec,HA)=(%d,%d) degrees,\n" +
"T=%d sec, yields a star trail RMS of %6.2f"" (over %d PA angles)",

r2s*delta, fl, w, h, r2d*lambda, r2d*alpha, r2d*zeta,

r2d* (®pi/2-thetal), -r2d*phi0, tau, sqgrt(var/nData), npa);
title (txt);
fig2.children(l) .1is

"

= "on";

// Controlled tracking

[trail, trail2d] = trackingError (omega, tau, pa, thetal, phiO, w, h, f1, =t);

// Plot of target and FOV corner trails (controlled).
fig3 = scf(3); clf();

var = 0;
nData = 0;
for i = 1:5 do
x2d = zeros (2,npa);

y2d = zeros (2,npa);
for ipa = 1:npa do
tmp = r2s*trail2ad(:,:,1i,ipa);
x2d(:,ipa) = tmp (1l '
y2d(:,ipa) = tmp (2
// Statistics
if 1 > 1 then
tmp tmp(:,2) - tmp(:,1);
var = var + tmp'*tmp;
nData = nData + 1;

r o)
I

’
7

end
end
plot(x2d, y2d, 'o-");
end
xlabel ("X (arc seconds)");
ylabel ("Y (arc seconds)");
txt = sprintf ("PA error=%d"", controlled, focal length=%d mm, sensor=%dx%d mm, \n" +
"(Latitude,Alt,Az)=(%d, %d, %d) degrees, (Dec,HA)=(%d,%d) degrees,\n" +
"T=%d sec, yields a field rotation RMS of %$6.2f"" (over %d PA angles)",

r2s*delta, fl, w, h, r2d*lambda, r2d*alpha, r2d*zeta,

r2d* (¢pi/2-thetal), -r2d*phi0, tau, sqgrt(var/nData), npa);
title (txt);
fig3.children(l) .is

"on";

// Plot of field rotation in FOV corners (controlled)
figd = scf(4); clf();
for i = 2:5 do
subplot(2,2,1i-1);
x2d = zeros (2,npa);
y2d = zeros (Z,npa);
for ipa = 1:npa do
tmp = r2s*trail2d(:,:,1i,ipa);
x2d(:,ipa) = tmp(l,:)";
y2d(:,ipa) = tmp(2,:)"';
end
plot (x2d, y2d, 'o-');
xlabel ("X (arc seconds)");
ylabel ("Y (arc seconds)");
txt = sprintf ("Error RMS=%6.2f""", sqgrt(var/nData));
title(txt);
figd.children(l).is
end

= "on

".
’

// This is for debugging purposes. Check if the data is
// approximately in a flat horizontal plane through [0;0;1].
// If not, the rotations are wrong.
[T _theta, T _phi] = ncpToTarget (thetal, phi0);
figs = scf(5); clf();
for i = 1:5 do
x3d = zeros (2,npa);
y3d = zeros (2,npa);
z3d = zeros(2,npa);
for ipa = 1:npa do
tmp = trail(:,:,i,ipa);
tmp = T theta'*T phi'*tmp;
x3d(:,ipa) = tmp(l,:)";
y3d(:,ipa) = tmp(
z3d (:,1ipa) = tmp (

e = param3dl (x3d, y3d, z3d, 'o-");
ound = color ("red");
e.mark mode = "on";

end

xlabel ("X (arc seconds)");
ylabel ("Y (arc seconds)");
zlabel ("Z (arc seconds)");

title(sprintf ("Debug window to check the rotations", r2d*60*delta)):;
fig5.children(l) .isoview = "on";

