
 

 

Tracking errors due to polar misalignment of EQ mounts 

We will use Cartesian coordinate systems for the transformation from a basis that is fixed relative to the 

sky, to telescope coordinates.  The transformations between them will be defined by orthogonal 

matrices to simplify the math.  For convenience, assuming orthogonal base vectors, we refer to the 

bases by orthogonal matrices that have the XYZ base vectors as columns.  We use subscripts for these 

matrices to refer to the various bases and the transformations between them. 

Going from one orthogonal basis to the next changes the coordinates as follows.  If the base vectors are 

the columns of a matrix 𝑀 then any vector 𝑣 is represented as 𝑣 = 𝑀𝑚 where 𝑚 contains the 

coordinates in that basis.  If we switch to another basis that are the columns of a matrix 𝑁 defined as 

𝑁 = 𝑀𝑇 where 𝑇 is orthogonal, then 𝑣 = 𝑀𝑚 = 𝑀𝑇𝑇′𝑚 = 𝑁𝑛 where the coordinates of 𝑣 in 𝑁 are 

𝑛 = 𝑇′𝑚.  Our coordinate transformations will all be composed from basic Given’s rotations. 

An appropriate representation of the night sky is the unit sphere with an infinitesimally small Earth at its 

center.  For small angles, Euclidian distances on the unit sphere correspond with radians, which is 

convenient.  For lack of a better term, let us refer to the Cartesian coordinate system that is fixed 

relative to the sky and where the Z axis is pointing to the NCP1, as the universe coordinate system.  

Where the X and Y axes are pointing can be chose arbitrarily so long as the XYZ system is right-handed. 

The subsequent bases for going from universe to telescope coordinates are as follows: 

• Universe:  Assume that Earth is at a fixed point in time 𝑡, say, 𝑡 = 0 when we start observing 

and perform our polar alignment.  Our first basis 𝑀1 is chosen such that the Z axis points to the 

NCP, XYZ is right-handed and the observer’s location is on the XZ plane. 

• Observer on Earth:  Our second basis 𝑀2 rotates 𝑀1 around the Y axis over an angle 𝜆𝑐 =
𝜋

2
− 𝜆 

where 𝜆 is the latitude of the observer in radians.  The direction of this rotation is such that the 

positive Z axis rotates towards the positive X axis.  In this basis, Z points at zenith in the 

observer’s coordinate system and the XY plane is aligned with the horizon.  The negative X axis 

points North in the YZ plane below the NCP, and the positive Y axis points East.  Let this 

transformation be defined by 𝑀2 = 𝑀1𝑇2. 

• Earth’s rotation:  Our third basis 𝑀3 rotates 𝑀2 around the Z axis of 𝑀1 (points at the NCP) 

Eastward (positive X axis moves towards positive Y axis) in function of time at an angle 𝜔𝑡 where 

𝜔 is Earth’s angular rotation velocity relative to the universe.  This is suitable for describing how 

we experience the skies from our observing location at any point in time.  Let this 

transformation be defined by 𝑀3 = 𝑀2𝑇3. 

• Polar (mis)alignment:  Our fourth basis 𝑀4 is that of the mounted telescope with Z defined as 

the RA axis of the mount.  For this, we first rotate 𝑀3 around the Y axis back over an angle 𝜆𝑐 +

𝜉 then around the rotated X axis of 𝑀4 over an angle 𝜂 (the positive direction is from the 

positive Z axis to the positive Y axis), where 𝜉 and 𝜂 represent the polar misalignment errors.  

 
1 Sorry, we will assume the Northern hemisphere only and not consider the SCP and East/West orientations for the 
Southern hemisphere.  



 

 

Note that these angles are Euler angles defined by chained rotations, not polar coordinates.  Let 

this transformation be defined by 𝑀4 = 𝑀3𝑇4. 

• RA axis rotation:  Our fifth basis 𝑀5 is where we rotate 𝑀4 around its Z axis over an angle 𝜔𝑡 

Westward.  This represents the tracking of the telescope just using its RA motor.  Let this 

transformation be defined by 𝑀5 = 𝑀4𝑇5. 

To find the effect of polar misalignment of an object in the sky we then simply transform its coordinates 

from 𝑀1 to 𝑀5 = 𝑀1𝑇2𝑇3𝑇4𝑇5 and study its behavior in function of time.  The rotation matrices are as 

follows: 

𝑇2 = (
cos 𝜆𝑐 0 sin 𝜆𝑐

0 1 0
− sin 𝜆𝑐 0 cos 𝜆𝑐

) 

𝑇3 = (
cos 𝜆𝑐 0 − sin 𝜆𝑐

0 1 0
sin 𝜆𝑐 0 cos 𝜆𝑐

) (
cos 𝜔𝑡 − sin 𝜔𝑡 0
sin 𝜔𝑡 cos 𝜔𝑡 0

0 0 1
) (

cos 𝜆𝑐 0 sin 𝜆𝑐

0 1 0
− sin 𝜆𝑐 0 cos 𝜆𝑐

) 

𝑇4 = (
cos 𝜆𝑐 0 − sin 𝜆𝑐

0 1 0
sin 𝜆𝑐 0 cos 𝜆𝑐

) (
cos 𝜉 0 − sin 𝜉 

0 1 0
sin 𝜉 0 cos 𝜉 

) (
1 0 0
0 cos 𝜂 sin 𝜂 
0 − sin 𝜂 cos 𝜂 

) 

𝑇5 = (
cos 𝜔𝑡 sin 𝜔𝑡 0

− sin 𝜔𝑡 cos 𝜔𝑡 0
0 0 1

) 

Positive 𝜉  corresponds with the positive Z axis moving towards the negative X axis (moving North), and 

positive 𝜂  corresponds with the Z axis moving towards the positive Y axis (moving East).  The 

transformations from the 𝑀1 (universe) basis to the 𝑀5 (mount) basis is given by 𝑇 = 𝑇2𝑇3𝑇4𝑇5, which 

simplifies to 

𝑇 = (
cos 𝜔𝑡 − sin 𝜔𝑡 0
sin 𝜔𝑡 cos 𝜔𝑡 0

0 0 1
) (

cos 𝜉  0 − sin 𝜉  
0 1 0

sin 𝜉  0 cos 𝜉  
) (

1 0 0
0 cos 𝜂 sin 𝜂 
0 − sin 𝜂 cos 𝜂 

) (
cos 𝜔𝑡 sin 𝜔𝑡 0

− sin 𝜔𝑡 cos 𝜔𝑡 0
0 0 1

) 

The base transformation is 𝑀5 = 𝑀1𝑇 and the mount coordinates are 𝑇′ times the universe coordinates.  

In the natural Cartesian 𝑀1 basis we would have 𝑀1 = 𝐼 and 𝑀5 = 𝑇. 

Note that when 𝜉 = 𝜂 = 0 we have perfect tracking thus 𝑀1 = 𝑀5 and 𝑇 = 𝐼.  Note also that the 

observer’s latitude has completely dropped out of the result.   

Thus, a target on the unit sphere in universe coordinates 

(

𝑥(𝜗, 𝜑)
𝑦(𝜗, 𝜑)
𝑧(𝜗, 𝜑)

) = (
sin 𝜗 cos 𝜑
sin 𝜗 sin 𝜑

cos 𝜗

) 

has mount coordinates 



 

 

𝑃(𝜗, 𝜑, 𝑡, 𝜉, 𝜂) = 𝑇(𝜔, 𝑡, 𝜉, 𝜂)′ (

𝑥(𝜗, 𝜑)
𝑦(𝜗, 𝜑)
𝑧(𝜗, 𝜑)

) 

Test points for a camera 

Let the target have universe coordinates (𝜗0, 𝜑0): 

(

𝑥0

𝑦0

𝑧0

) = (

sin 𝜗0 cos 𝜑0

sin 𝜗0 sin 𝜑0

cos 𝜗0

) 

Note that we can write this as an Euler rotation of the Z axis unit vector of the mount coordinate system  

(

sin 𝜗0 cos 𝜑0

sin 𝜗0 sin 𝜑0

cos 𝜗0′
) = (

cos 𝜑0 − sin 𝜑0 0
sin 𝜑0 cos 𝜑0 0

0 0 1
) (

cos 𝜗0 0 sin 𝜗0

0 1 0
− sin 𝜗0 0 cos 𝜗0

) (
0
0
1

) 

For a camera sensor of size 𝑤 × ℎ and a telescope of focal length 𝐹, Let us define the projection of the 

corners of the camera sensor around the Z axis on the unit sphere as 

1

2𝐹
(

±ℎ
±𝑤

1
) ‖(

ℎ
𝑤
1

)‖⁄  

We can then apply the same transformation to the corners to center the camera’s FOV around the 

target.  Applying  𝑃(𝜗, 𝜑, 𝑡, 𝜉, 𝜂) to these test points yields the star trails from 𝑡 = 0 to 𝑡 = 𝑇.  After this 

we convert the result back to universe coordinates by pre-multiplying the trails with 𝑇(𝜔, 0, 𝜉, 𝜂) that 

also make the starting points of the trails coincide for each test point.  We then flip the result back up to 

the tangent plane of the unit sphere at the Z axis by applying the transpose (inverse) of the above 

transformation, and select the Y coordinate as the X coordinate in 2D, and minus the X coordinate as the 

Y coordinate in 2D.  Finally, we plot the 2D trails and calculate their statistics over the set of 

misalignment angles. 

Drift and field rotation 

Let (𝜗, 𝜑) be the spherical coordinates of any point of interest, for instance the target or the corners of 

the camera’s FOV.  The uncontrolled drift of the object from 𝑡 = 0 to 𝑡 = 𝑇, using the start and end 

points only, is then defined as 

𝐷(𝜗, 𝜑, 𝑇, 𝜉, 𝜂) = 𝑃(𝜗, 𝜑, 𝑇, 𝜉, 𝜂) − 𝑃(𝜗, 𝜑, 0, 𝜉, 𝜂) 

The term uncontrolled indicates that no control is applied to keep the central object in the FOV in its 

place.   



 

 

Let us consider the controlled case where the central object remains fixed by perfect tracking and/or 

autoguiding and where the only drift is field rotation in the corners of the FOV.  We can create this 

situation by subtracting the drift of the target from the drift of all test points: 

𝐸(𝜗, 𝜑, 𝑡, 𝜉, 𝜂) = 𝑃(𝜗, 𝜑, 𝑡, 𝜉, 𝜂) − 𝑃(𝜗0, 𝜑0, 𝑡, 𝜉, 𝜂) 

The field rotation is then described by how the difference between start and end point, 

𝐹(𝜗, 𝜑, 𝑇, 𝜉, 𝜂) = 𝐸(𝜗, 𝜑, 𝑇, 𝜉, 𝜂) − 𝐸(𝜗, 𝜑, 0, 𝜉, 𝜂) 

These error trails are in 3D near the unit sphere.  We can transform them to 2D trails in the same way as 

described in the previous section. 

When people talk about polar misalignment, they usually mean the magnitude in no particular direction.  

The tracking errors depend significantly on that direction.  Since it is not easy for a user to know in what 

direction the RA axis is misaligned, we can take the RMS over a number of polar misalignment angles 

(𝜉 𝜂) as described above with a Euclidian norm equal to a given polar misalignment magnitude and 

return the RMS value of the tracking errors as our error measure. 

Example 

As an example, let us consider a telescope of 750 mm focal length with a 36x24 mm camera sensor.  The 

observer is at 𝜆 = 34 degrees latitude and the target coordinates as seen by the observer are an 

altitude of 𝛼 = 70 degrees and an azimuth of 𝜁 = 100 degrees.  The polar misalignment magnitude is 

𝛿 = 2 arc minutes and the exposure time is 𝑇 = 300 seconds.  How big are the star trails in the corners 

of the image (on average for all possible directions of polar misalignment)? 

Our analysis requires the target location in the 𝑀1 basis while our problem gives it in the 𝑀2 basis, so 

first we have to transform it back.  In the 𝑀2 coordinate system we have spherical coordinates 𝜗2 =
𝜋

180
(90 − 𝛼) radians and 𝜑2 =

𝜋

180
(180 − 𝜁) radians.  Its Cartesian coordinates in the 𝑀2 basis are 

(

𝑥2

𝑦2

𝑧2

) = (
sin 𝜗2 cos 𝜑2

sin 𝜗2 sin 𝜑2

cos 𝜗2

) 

The Cartesian coordinates in the 𝑀1 basis are 

(
𝑥
𝑦
𝑧

) = 𝑇2 (

𝑥2

𝑦2

𝑧2

) = (
sin 𝜗 cos 𝜑
sin 𝜗 sin 𝜑

cos 𝜗

) 

This also yields the spherical coordinates (𝜗 𝜑).  Alternatively, we can simply assume that the 

equatorial Dec and HA coordinates are known and convert them to spherical coordinates, which is 

easier.  We just wanted to illustrate a common setup for a user on the ground with his horizon and 

meridian. 



 

 

We want to find how the polar misalignment affects the target and the corners of the camera’s FOV 

centered around it.  For this, note that the target is the result of two rotations acting on the NCP: 

(
𝑥
𝑦
𝑧

) = (
sin 𝜗 cos 𝜑
sin 𝜗 sin 𝜑

cos 𝜗

) = (
cos 𝜑 − sin 𝜑 0
sin 𝜑 cos 𝜑 0

0 0 1
) (

cos 𝜗 0 sin 𝜗
0 1 0

− sin 𝜗 0 cos 𝜗
) (

0
0
1

) 

To add the corners of the camera’s FOV we can define a sensor projection on the unit circle around the 

NCP.  Let 𝑤 and ℎ be the sensor width and height, respectively.  If 𝐹 is the focal length of the telescope, 

this corresponds with angular values 
𝑤

𝐹
 and 

ℎ

𝐹
 in a small-angle approximation.  The matrix 𝑆 defined as 

𝑆 =
1

2𝐹
(

−ℎ −ℎ
−𝑤 𝑤

1 1

ℎ ℎ
−𝑤 𝑤

1 1
) ‖(

𝑤
ℎ
1

)‖⁄  

has columns that define this projection centered around the Z axis with the long side parallel to the Y 

axis.  The columns of the matrix 

𝑀 = (
cos 𝜑 − sin 𝜑 0
sin 𝜑 cos 𝜑 0

0 0 1

) (
cos 𝜗 0 sin 𝜗

0 1 0
− sin 𝜗 0 cos 𝜗

) ((
0
0
1

) 𝑆 𝑆) 

are then the target and the corners of the camera’s FOV centered around the target with the long side 

parallel to the XY plane.  These are the points that we want to test for polar misalignment. 

Note that we can write 

(
𝑥
𝑦
𝑧

) = (
sin 𝜗 cos 𝜑
sin 𝜗 sin 𝜑

cos 𝜗

) = (
cos 𝜑 − sin 𝜑 0
sin 𝜑 cos 𝜑 0

0 0 1
) (

cos 𝜗 0 sin 𝜗
0 1 0

− sin 𝜗 0 cos 𝜗
) (

0
0
1

) 

On those corners, and the target itself, we can now run the error formula for a suitable range of values 

for (𝜉 𝜂) and calculate the statistics.  The results, uncontrolled, are shown below. 

We have not discussed how to project the field rotation 𝐹(𝜗, 𝜑, 𝑇, 𝜉, 𝜂) on the tangent plane to the unit 

sphere at (𝜗, 𝜑).  With the transformation above, this is the projection on the XY plane (also accounting 

for some sign and coordinate swaps of XY after rotating upwards): 

(
0 1 0

−1 0 0
) (

cos 𝜑 − sin 𝜑 0
sin 𝜑 cos 𝜑 0

0 0 1

) (
cos 𝜗 0 sin 𝜗

0 1 0
− sin 𝜗 0 cos 𝜗

) 𝐹(𝜗, 𝜑, 𝑇, 𝜉, 𝜂) 

This corresponds with the errors displayed in the pictures that follow.  For 𝐷(𝜗, 𝜑, 𝑇, 𝜉, 𝜂) we do the 

same although the radial component is negligible relative to its size. 

 

  



 

 

The first result is the uncontrolled case leading to an error RMS of 2.05”.  The entire FOV is shown.  The 

errors are visible and look similar at all 5 points.  An RMS value of 2.05” over 5 minutes is 0.41” per 

minute, which is easy for an autoguider to correct.  Still, alignment is recommended because you don’t 

want an autoguider to work harder than it should. 
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A zoomed-in version for the target (center of FOV) is shown below.  Notice how much the tracking error 

varies across polar misalignment angles, and how large it is. 

 

  

               

      

      

      

      

      

      

      

        

        

        

        

        

        

               

 
  
 
  
  
 
 
 
 
 
 
 

                                                                  

                                                                 

                                                                 



 

 

Below is a picture of the controlled situation over the entire FOV.  Clearly the errors have been reduced 

drastically, to the point where one would have to zoom into the corners twice to spot any sign of field 

rotation.  The tracking errors are now just due to field rotation, and are reduced from 114” to just 2.6”! 

 

 

  

                                                        

 

      

      

     

     

      

      

     

     

      

      

      

    

   

     

     

     

               

 
  
 
  
  
 
 
 
 
 
 
 

                                                                

                                                                 

                                                                     



 

 

This is a zoomed-in view of the field rotation errors in the corners.  The colors are overlapping, which 

makes it a bit hard to discern them but the direction shows how they rotate around the center. 

 

  

        

       

       

        

        

        

        

        

               

 
  
 
  
  
 
 
 
 
 
 
 

                 

       

       

       

        

        

        

        

        

               

 
  
 
  
  
 
 
 
 
 
 
 

                 

        

        

        

         

         

         

         

         

               

 
  
 
  
  
 
 
 
 
 
 
 

                 

       

        

        

         

         

         

         

         

               

 
  
 
  
  
 
 
 
 
 
 
 

                 



 

 

Approximation for small polar misalignment angles 

For small (𝜉 𝜂) the approximation to first order is 

𝑀5 ≈ (
cos 𝜔𝑡 − sin 𝜔𝑡 0
sin 𝜔𝑡 cos 𝜔𝑡 0

0 0 1
) (

1 0 −𝜉
0 1 0
𝜉 0 1

) (
1 0 0
0 1 𝜂
0 −𝜂 1

) (
cos 𝜔𝑡 sin 𝜔𝑡 0

− sin 𝜔𝑡 cos 𝜔𝑡 0
0 0 1

)

≈ (
cos 𝜔𝑡 − sin 𝜔𝑡 0
sin 𝜔𝑡 cos 𝜔𝑡 0

0 0 1
) (

1 0 −𝜉
0 1 𝜂
𝜉 −𝜂 1

) (
cos 𝜔𝑡 sin 𝜔𝑡 0

− sin 𝜔𝑡 cos 𝜔𝑡 0
0 0 1

)

= (
cos 𝜔𝑡 − sin 𝜔𝑡 0
sin 𝜔𝑡 cos 𝜔𝑡 0

0 0 1
) (

cos 𝜔𝑡 sin 𝜔𝑡 −𝜉
− sin 𝜔𝑡 cos 𝜔𝑡 𝜂

𝜉 cos 𝜔𝑡 + 𝜂 sin 𝜔𝑡 𝜉 sin 𝜔𝑡 − 𝜂 cos 𝜔𝑡 1
)

= (

1 0 −𝜉 cos 𝜔𝑡 − 𝜂 sin 𝜔𝑡
0 1 −𝜉 sin 𝜔𝑡 + 𝜂 cos 𝜔𝑡

𝜉 cos 𝜔𝑡 + 𝜂 sin 𝜔𝑡 𝜉 sin 𝜔𝑡 − 𝜂 cos 𝜔𝑡 1
) 

Thus, the observed track 𝑃(𝜗, 𝜑, 𝜔, 𝜉, 𝜂) is approximated by 

𝑃(𝜗, 𝜑, 𝑡, 𝜉, 𝜂) = 𝑀5 (
𝑥
𝑦
𝑧

) ≈ (

𝑥 − 𝑧(𝜉 cos 𝜔𝑡 + 𝜂 sin 𝜔𝑡)

𝑦 + 𝑧(𝜂 cos 𝜔𝑡 − 𝜉 sin 𝜔𝑡)

𝑧 + (𝑥𝜉 − 𝑦𝜂) cos 𝜔𝑡 + (𝑥𝜂 + 𝑦𝜉) sin 𝜔𝑡

) 

For small polar misalignment angles this approximation is quite good, and it allows us to use analytical 

expressions that are not overly complex. 

Relationship to other coordinate systems 

We already mentioned the spherical coordinate system.  It is defined by angles (𝜗 𝜑) where 𝜗 is the 

angle between a vector and the Z axis, and where 𝜑 is the angle between the X axis and the projection 

of a vector on the XY plane, positive in the direction where the positive X axis rotates towards the 

positive Y axis. 

The equatorial coordinate system defines the declination (Dec) angle as 
𝜋

2
− 𝜗 in degrees, and the hour 

angle (HA) as −𝜑 if the X axis were pointing at the meridian, expressed in hours.  The home position of 

equatorial mounts is defined by an HA value of 6 hours.  This means that the RA axis must rotate 90 

degrees or 6 hours towards the West to allow the Dec axis to rotate the telescope along the meridian.    

We will not need the definition of right ascension (RA) for our purposes and can avoid talking about 

equinoxes.  It will be convenient to assume that the X axis is aligned with the meridian. 

While we just concluded that the location of the observer is irrelevant, we had to define the coordinate 

system 𝑀2 in which the observer’s telescope is located, and talked about the Alt/Az coordinate system.  

The altitude (Alt) coordinate is the angle between the horizontal plane and the target.  The azimuth (Az) 

is the angle between the projection of the NCP on the horizontal plane and the projection of the target 



 

 

on the horizontal plane, positive in the direction from East to South.  Both are expressed in degrees.  

Thus, Az=180 degrees corresponds with HA=0 hours (the meridian), and the positive direction of Az and 

HA is the same. 

Scilab code 

This code shows the effect of polar misalignment given the Alt/Az target at a given latitude.  The 

parameters can be changed in the lines at the top.  While it is not too difficult to change the code to 

start from HA/Dec coordinates, any planetarium program provides easy conversions to Alt/Az.  Install 

Scilab, save this code as a .sce file, load it in the editor and hit F5. 

d2r = %pi/180;                      // Degrees to radians 

r2d = 1/d2r;                        // Radians to degrees 

s2r = d2r/3600;                     // Arc seconds to radians 

r2s = 1/s2r;                        // Radians to arc seconds 

 

/////////////////// USER PARAMETERS ////////////////////// 

w = 36;                             // Sensor width in mm 

h = 24;                             // Sensor height in mm 

fl = 750;                           // Focal length 

lambda = d2r*34;                    // Latitude in radians 

delta = s2r*120;                    // Polar misalignment magnitude 

alpha = d2r*70;                     // Target altitude in observer frame 

zeta = d2r*100;                     // Target azimuth in observer frame 

omega = 2*%pi/(24*3600);            // Earth's angular velocity 

tau = 300;                          // Exposure time in seconds 

npa = 12;                           // Number of polar misalignmeent angles 

////////////////////////////////////////////////////////// 

 

function [theta, phi]=c2s(xyz) 

    // Cartesian to spherical coordinates 

    // xyz can be a matrix where tje columns are the 3D vectors 

    [m,n] = size(xyz); 

    phi = zeros(n,1); 

    for i = 1:n do 

        x = xyz(1,i); 

        y = xyz(2,i); 

        z = xyz(3,i); 

        theta = acos(z); 

        if sin(theta) <> 0 then 

            phi(i) = acos(x/sin(theta)); 

        else 

            phi(i) = 0; 

        end 

    end 

endfunction 

 

function [xyz]=s2c(theta, phi) 

    // Spherical to Cartesian coordinates 

    // theta and phi can be vectors 

    n = length(theta); 

    for i = 1:n do 

        xyz(:,i) = [sin(theta(i))*cos(phi(i)); sin(theta(i))*sin(phi(i)); cos(theta(i))]; 

    end 

endfunction 

 

function [T_ksi, T_eta]=paMisalignment(ksi, eta) 

    // Polar misalignment from Euler angles 

    // Rotate around Y (positive is from X+ to Z+) 

    c = cos(ksi); 

    s = sin(ksi); 

    T_ksi = [c,0,-s; 0,1,0; s,0,c]; 

    // Rotate around X (positive is from Z+ to Y+) 



 

 

    c = cos(eta); 

    s = sin(eta); 

    T_eta = [1,0,0; 0,c,s; 0,-s,c]; 

endfunction 

 

function [T_theta, T_phi]=ncpToTarget(theta, phi) 

    // Rotation matrices from [0;0;1] to target in spherical coordinates 

    c = cos(theta); 

    s = sin(theta); 

    T_theta = [c,0,s; 0,1,0; -s,0,c]; 

    c = cos(phi); 

    s = sin(phi); 

    T_phi = [c,-s,0; s,c,0; 0,0,1]; 

endfunction 

 

function [trail, trail2d]=trackingError(omega, tau, pa, theta0, phi0, w, h, fl, control) 

    // trail: 4D matrix of trails on the unit sphere 

    // trail2D: 4D matrix of trail projection on tangent plane to unit sphere 

    // omega: Earth's angular velocity 

    // tau: Time period (exposure time) 

    // pa: Polar misalignment Euler angles 

    // theta0, phi0: Spherical coordinates of target 

    // w,h:  Camera sensor width and height 

    // fl: Focal length of telescope 

    // control: %t for exact target tracking otherwise %f 

    t = [0; tau];                         // Time line (begin and end point are enough) 

    nt = length(t); 

    npa = size(pa, 1); 

    trail = zeros(3, nt, 5, npa); 

    trail2d = zeros(2, nt, 5, npa); 

 

    // Corners in universe coordinates centered around the target 

    dh = h/(2*fl); 

    dw = w/(2*fl); 

    corners = [-dh,-dh,dh,dh;-dw,dw,-dw,dw;1,1,1,1]/norm([dh;dw;1]); 

    [T_theta, T_phi] = ncpToTarget(theta0, phi0); 

    // Test points (target and FOV corners) in universe coordinates 

    points = [s2c(theta0, phi0), T_phi*T_theta*corners]; 

 

    for ipa = 1:npa do 

        // Transformation matrix from universe to mount at t=0 

        [T_ksi, T_eta] = paMisalignment(pa(ipa,1), pa(ipa,2)); 

        T0 = T_ksi*T_eta; 

        for i = 1:5 do 

            for it = 1:nt do 

                c = cos(omega*t(it)); 

                s = sin(omega*t(it)); 

                T_t = [c,s,0; -s,c,0; 0,0,1]; 

                T = T_t'*T_ksi*T_eta*T_t; 

                if control then 

                    trail(:,it,i,ipa) = T0*T'*points(:,i) - T0*T'*points(:,1); 

                else 

                    trail(:,it,i,ipa) = T0*T'*points(:,i); 

                end 

                // Rotate back to NCP then project on XY plane and swap 2D coordinates 

                trail2d(:,it,i,ipa) = [0,1,0;-1,0,0]*T_theta'*T_phi'*trail(:,it,i,ipa); 

             end 

        end 

    end 

    if control then 

        trail(:, :, 1, :) = 0 

    end 

     

endfunction 

 

// Transformation matrix from universe to observer basis 

// Observer is at latitude lambda on the meridian (XZ plane) 

// Target is at (Alt, Az) from the observer's viewpoint 

lambda_c = %pi/2 - lambda; 

c = cos(lambda_c); 

s = sin(lambda_c); 



 

 

T_obs = [c,0,s; 0,1,0; -s,0,c]; 

// Calculate the spherical observer coordinates 

theta2 = %pi/2 - alpha;             // Spherical coordinate theta is 90 - alt 

phi2 = %pi - zeta;                  // Az increases from 0 at -X to 90 at Y 

xyz2 = s2c(theta2, phi2); 

// Transform to universe coordinates 

xyz = T_obs*xyz2; 

// Calculate the spherical universe coordinates 

[theta0, phi0] = c2s(xyz); 

 

pa = [0:npa-1]'*2*%pi/npa;          // Polar misalignment angles 

pa = [sin(pa), cos(pa)]*delta;      // Matrix of (ksi, eta) Euler angles 

 

// Uncontrolled tracking 

[trail, trail2d] = trackingError(omega, tau, pa, theta0, phi0, w, h, fl, %f); 

 

// Plot of target and FOV corner trails (uncontrolled). 

fig1 = scf(1); clf(); 

var = 0; 

nData = 0; 

for i = 1:5 do 

    x2d = zeros(2,npa); 

    y2d = zeros(2,npa); 

    for ipa = 1:npa do 

        tmp = r2s*trail2d(:,:,i,ipa); 

        x2d(:,ipa) = tmp(1,:)'; 

        y2d(:,ipa) = tmp(2,:)'; 

        // Statistics 

        tmp = tmp(:,2) - tmp(:,1); 

        var = var + tmp'*tmp; 

        nData = nData + 1; 

    end 

    plot(x2d, y2d, 'o-'); 

end 

xlabel("X (arc seconds)"); 

ylabel("Y (arc seconds)"); 

txt = sprintf("PA error=%d"", uncontrolled, focal length=%d mm, sensor=%dx%d mm,\n" + ... 

    "(Latitude,Alt,Az)=(%d,%d,%d) degrees, (Dec,HA)=(%d,%d) degrees,\n" + ... 

    "T=%d sec, yields a star trail RMS of %6.2f"" (over %d PA angles)", ... 

    r2s*delta, fl, w, h, r2d*lambda, r2d*alpha, r2d*zeta, ... 

    r2d*(%pi/2-theta0), -r2d*phi0, tau, sqrt(var/nData), npa); 

title(txt); 

fig1.children(1).isoview = "on"; 

 

// Plot of target trails (uncontrolled) 

fig2 = scf(2); clf(); 

var = 0; 

nData = 0; 

x2d = zeros(2,npa); 

y2d = zeros(2,npa); 

for ipa = 1:npa do 

    tmp = r2s*trail2d(:,:,i,ipa); 

    x2d(:,ipa) = tmp(1,:)'; 

    y2d(:,ipa) = tmp(2,:)'; 

    // Statistics 

    tmp = tmp(:,2) - tmp(:,1); 

    var = var + tmp'*tmp; 

    nData = nData + 1; 

end 

plot(x2d, y2d, 'o-'); 

xlabel("X (arc seconds)"); 

ylabel("Y (arc seconds)"); 

txt = sprintf("PA error=%d"", uncontrolled, focal length=%d mm, sensor=%dx%d mm,\n" + ... 

    "(Latitude,Alt,Az)=(%d,%d,%d) degrees, (Dec,HA)=(%d,%d) degrees,\n" + ... 

    "T=%d sec, yields a star trail RMS of %6.2f"" (over %d PA angles)", ... 

    r2s*delta, fl, w, h, r2d*lambda, r2d*alpha, r2d*zeta, ... 

    r2d*(%pi/2-theta0), -r2d*phi0, tau, sqrt(var/nData), npa); 

title(txt); 

fig2.children(1).isoview = "on"; 

 

// Controlled tracking 



 

 

[trail, trail2d] = trackingError(omega, tau, pa, theta0, phi0, w, h, fl, %t); 

 

// Plot of target and FOV corner trails (controlled). 

fig3 = scf(3); clf(); 

var = 0; 

nData = 0; 

for i = 1:5 do 

    x2d = zeros(2,npa); 

    y2d = zeros(2,npa); 

    for ipa = 1:npa do 

        tmp = r2s*trail2d(:,:,i,ipa); 

        x2d(:,ipa) = tmp(1,:)'; 

        y2d(:,ipa) = tmp(2,:)'; 

        // Statistics 

        if i > 1 then 

            tmp = tmp(:,2) - tmp(:,1); 

            var = var + tmp'*tmp; 

            nData = nData + 1; 

        end 

    end 

    plot(x2d, y2d, 'o-'); 

end 

xlabel("X (arc seconds)"); 

ylabel("Y (arc seconds)"); 

txt = sprintf("PA error=%d"", controlled, focal length=%d mm, sensor=%dx%d mm,\n" + ... 

    "(Latitude,Alt,Az)=(%d,%d,%d) degrees, (Dec,HA)=(%d,%d) degrees,\n" + ... 

    "T=%d sec, yields a field rotation RMS of %6.2f"" (over %d PA angles)", ... 

    r2s*delta, fl, w, h, r2d*lambda, r2d*alpha, r2d*zeta, ... 

    r2d*(%pi/2-theta0), -r2d*phi0, tau, sqrt(var/nData), npa); 

title(txt); 

fig3.children(1).isoview = "on"; 

 

// Plot of field rotation in FOV corners (controlled) 

fig4 = scf(4); clf(); 

for i = 2:5 do 

    subplot(2,2,i-1); 

    x2d = zeros(2,npa); 

    y2d = zeros(2,npa); 

    for ipa = 1:npa do 

        tmp = r2s*trail2d(:,:,i,ipa); 

        x2d(:,ipa) = tmp(1,:)'; 

        y2d(:,ipa) = tmp(2,:)'; 

    end 

    plot(x2d, y2d, 'o-'); 

    xlabel("X (arc seconds)"); 

    ylabel("Y (arc seconds)"); 

    txt = sprintf("Error RMS=%6.2f""", sqrt(var/nData)); 

    title(txt); 

    fig4.children(1).isoview = "on"; 

end 

 

// This is for debugging purposes.  Check if the data is 

// approximately in a flat horizontal plane through [0;0;1]. 

// If not, the rotations are wrong. 

[T_theta, T_phi] = ncpToTarget(theta0, phi0); 

fig5 = scf(5); clf(); 

for i = 1:5 do 

    x3d = zeros(2,npa); 

    y3d = zeros(2,npa); 

    z3d = zeros(2,npa); 

    for ipa = 1:npa do 

        tmp = trail(:,:,i,ipa); 

        tmp = T_theta'*T_phi'*tmp; 

        x3d(:,ipa) = tmp(1,:)'; 

        y3d(:,ipa) = tmp(2,:)'; 

        z3d(:,ipa) = tmp(3,:)'; 

    end 

    e = param3d1(x3d, y3d, z3d, 'o-'); 

    e.foreground = color("red"); 

    e.mark_mode = "on"; 

 



 

 

end 

xlabel("X (arc seconds)"); 

ylabel("Y (arc seconds)"); 

zlabel("Z (arc seconds)"); 

title(sprintf("Debug window to check the rotations", r2d*60*delta)); 

fig5.children(1).isoview = "on"; 

 


